基于评教文本挖掘的高校教学质量评价指标构建与应用
李建龙,李立国
摘要:学生评教既是保障教学质量的重要活动,又是高校进行教学质量评价的主要手段。为提高教学评价效果,为授课教师和教学管理部门提供更有参考性的评教结果,区别于主要基于学生结构化评分数据进行的定量研究和基于非结构化评教文本数据进行的定性研究,基于大数据评教文本挖掘的研究方式被提上研究议程。以学生主观评语和客观评分两方面的评教数据为研究对象,采用层次分析法构建基于评教文本挖掘的高校教学质量评价指标体系,并通过线性回归方法对指标体系的科学性进行实证检验和应用分析。研究发现,海量学生评教数据兼具学术研究价值和实践指导意义。通过对学生评教文本进行挖掘和分析,以有效获取评教数据中的关键信息,如教师的教学态度、教学内容、教学能力、教学方法和教学效果等。基于层次分析法构建的5个维度23个层级的高校教学质量评价指标体系,能够较为全面、准确地利用学生评教数据对本科教学质量进行评价和解释。多元线性回归分析结果显示,该指标体系不仅能够了解学生重点关注的维度、预测学生评价分数并揭示教师教学质量与各个评价维度之间的关系,还可以应用于各类教师的教学质量评价,从而为教师提供精细化的教学诊断,为学校进行科学的教学管理决策提供数据咨询与服务支持。该评价指标体系的实际应用评价结果显示,不同类别课程存在的问题不同。为此,一方面要通过大数据、人工智能等新兴技术手段提高对学生评教数据的利用效率,深度挖掘海量学生评教数据背后的数据价值和学术研究价值,并加强与同行评教、督导评教和AI评教等不同视角评教结果的协同运用,开展基于学生中心和产出导向的教学评价应用;另一方面需要针对不同类别课程和不同年龄段教师的教学薄弱环节进行针对性教学改进,从而更好地服务高校教学质量的持续提升和学生的全面发展。